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ABSTRACT

Analytical and experimental data is presented validating

a finite segment cable model. The model consists of a series

of pin-connected rigid rods which may have different lengths,

diameters, and masses. The model is capable of simulating large,

three-dimensional motion of flexible cables. Its principal areas

of application are expected to be with the simulation of long,

heavy, towing and hoisting cables.
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INTRODUCTION

Approximately five years ago we introduced a three-dimensional

dynamic finite segment model for cables and chains [l].* The model consists

of a series of pin-connected rods or links. The model is developed so that

arbitrary external forces may be exerted on the links. The dynamics of

the system is then determined through numerical integration of the governing

equations of motion. In this report we present Aata which validates ana-

lytical predictions of the model.

Figure 1. shows a schematic representation of the model. The number

of links N is arbitrary. The length, diameter, mass, and inertias of the

individual links may also be arbitrarily chosen. This model is expected

to be effective in studying the nonlinear, three-dimensional, dynamic behavior

of long, heavy cables [1,21. Particular application with submerged towing

cables has also been suggested [3].

The attractive features of the model are: 1) the arbitrary dimensions

and physical parameters of the links of the model; 2) the arbitrary speci-

fication of externally applied forces; 3) the use of relative orientation

angles between the links to define the system configuration; and 4) the use

of Lagrange's form of d'Alembert's principle to develop the governing

equations of motion. The use of relative orientation angles is a convenience

in the specification of the system's configuration and in the introduction of

* Numbers in brackets refer to References at the end of the report.
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flexible and/or torsional springs and dampers between the links.

Lagrange's form of d'Alembert's principle as exposited by Kane and

others (4-8], has been shown, for large systems, to possess the

advantages of both Lagrange's equations and Newton's laws, but without

the corresponding disadvantages. That is, the principle provides for

the automatic elimination of the "non-working" internal constraint

forces without introducing tedious differentiation or other similar

calculations.

The objective of this report is to present several sets of data

validating this cable model. This data consists of: 1) a comparison of

results obtained from this model with analogous results obtained from a

two-dimensional multi-link pendulum model with governing equations

developed by Lagrange's equations; 2) a comparison of data from the

above models with the displacement and natural frequencies of a hanging

cable with data obtained analytically from a linear partial differential

equation model; and 3) a comparison of model data for a submerged

pendulum with experimental data recorded at the Civil Engineering Laboratory

at Port Hueneme, California.

The balance of this report is divided into four parts with the following

part summarizing the basic equations of the kinematics and dynamics of the

cable model. This is followed by the development of the two-dimensional

Lagrange multi-link pendulum model. The comparisnns of the models with

each other and with analytical and experimental data are presented in the

next part. The final part contains some concluding remarks on the signi-

ficance of the validation and on the application of the model.

2
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THE FINITE SEGMNT MODEL

Configuration

Consider again the representation of the model as shown in Figure 1.

To establish a geometrical accounting for this system, select one link

(say the first link) as the reference link. Next, label or number the

other links in ascending progression away from this link as shown in

figure 1. The configuration and kinematics of each body of this system

may then be developed relative to the reference link which, in turn, has

its configuration and kinematics defined relative to an inertial

reference frame R.

Consider a typical pair of adjoining links such as Lj and Lk as shown

in Figure 2. Let J<k, that is, let j-k-l. Then the general orientation

of Lk relative to L., may be defined in terms of the relative inclination

of the dextral orthogonal unit vector sets, nji and 'ki (i-1,2,3) fixed

in LA, and L.k, as shown in Figure 2. Specifically, let L and k be oriented

so that nji and nk, are respectively parallel. Then Lk may be brought into

any given orientation relative to L by three successive dextral rotations
about axes paral'el tc n , ' and through the angles a,, and " '"

and ni are then related to each other as:

n i "SK (1)

I i im" ". .

3" . . . . . . . . . . .
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Figure I. The Finite Segment Cable Model
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where SK is a 3x3 orthogonal transformation matrix ("shifter") defined

as [9]:

SKim nij * nkm (2)

(Regarding notation, repeated subscripts, such as m in the right side of

Equation (1) represent a sum over the range (1,2,3) of that index.)

SK may be written as the product of three orthogonal matrices as:

SK AK BK GK (3)

where

1 a 0]

AK 0 Cak -Sa k (4)

0 SI Cak

Lk~

CS k 0 S

BK L 0 (5)

C"k -Sv 0

GK SY, k 0 (6)

0 0 1

where S and C represent the sine and cosine.

h, iTil6



These expressions allow for the transformation of components of

vectors referred to one link of the system into components referred

to any other link of the system, and, in particular, to the inertial

reference frame R.

Since these transformation matrices play a central role throughout the

analysis, it is helpful to also have an algorithm for this derivative,

expecially the derivative of SOK, the transformation matrix between nki

and no. where the no, are fixed in R. Specifically, SOK is

SOKij ' " (7)

Hence, since the n . are fixed and therefore constant in R, the following

is obtained:

R
d(SOKiJ)/dt n oi dnkj/dt (8)

where the superscript R indicates that the derivative is computed in R.

However, since n k are fixed in Lk, their derivative may be written as

k x nk, where wk is the angular velocity of T, in R. Equation (8) may

then be rewritten as:

d(SOK j)!dt - -eimn-knCom *kj (9)

or as

i(SOK)/dt W K SOK (i0)



where WTK is a matrix defined as

"Kim -eimn(kII)

where w are the n components of w and e. is the standard permuta-
-on imnn

tion symbol (9,101. WK is simply the matrix whose dual vector [10]

is w k Equation (10) thus shows that the derivative may be computed by

a simple matrix multiplication.

Finally, Figure 2. contains symbols not yet defined in the sequel.

0. (j'l...,N) is the reference point of L., and it is the common point

of L. and its adjacent lower-numbered link. G. Qj=l,...,N) representsJ J

the mass center of Lj. r. (jl ,...,N) is the position vector of G

relative to 0 , and k is the position vector of 0k  relative to j. r.

and k are thus fixed in L.

Kinematics

The system shown in Figure 1. will in general have 3N+3 degrees of

freedom. These may be defined in terms of generalized coordinates X.3

(jzl,... ,3N+3). X1, X2, and X3 represent the position coordinates of

01 in R. The succeeding triplets of coordinates represent dextral rotations

of the links relative to the respective adjacent I.,wer links.

If the axial rotation of the links is neglected, the number of

degrees of freedom can be reduced to 2N+3. This also avoids singularities

which are occasionally encountered with large rotations as discussed in

References [11] and [121. .;hen the axial rotations are neglected,

Lt __



the 3, are zero for each link and the BK become identity matrices. In

the following kinematic analysis, the axial rotations of the links are

neglected.

The angular velocity kof L in R is readily obtained from the

addition formula [6]:

k " ! +  w2 +  ' " +  w-k (12)

where w is the angular velocity of relative to Lk . By using the

transformation properties of the shifters, Ak may be written as:

k = SO im( k mi +  kAK m3 )noi (13)

where 6 is Kronecker's delta symbol or the identity tensor [9,10].

Hence, by repeatedly substituting from Equation (13) into Equation (12),

takes the form:

k kZmX nom 
(14)

where there is a sum from 1 to 2N+3 on Z and from I to 3 on m. From

Equation (13), it is seen that the non-zero -kjm take one of the two

forms:

SOJmi 1

kZm (15)

SOJ mnAKn3

depending upon whether X., is a or Y,.

9



The angular acceleration a of L in R may be obtained by differ-

entiating Equation (14). Noting that the aom are constant, this becomes:

-k (WkZmXZ + kZmnz )n (16)

where from Equation (15) the non-zero wkZm take one of the two forms:

SOJl

kZm S6J MAK 3 + SOJn.AK (17)

where SOJ is given by Equation (10) and where AK is obtained by differ-

entiating Equation (4).

The velocity V. of G. in R may be obtained by differentiating Pj,

the position vector of G. relative to a fixed point 0 in R. FromJ

Figure I., Pj may be expressed as:

j-1

e Xk + SOJk~rjZ + Z S'OMkZZ)nok (18)
M= 1

where, as before, there is a sum over k and " from I to 3. Hence,

V. may be written in the form:-21

V. = V n (19-J Fj~ ak-zok

where by Equations (13), (10), and (11), the non-zero V.,, are given by:

"(jk 1k ,...,N: Z,k = 1,2,3) (20)

Zk k



and

I j-1

i-IV j k i;JkZ rj + WkpZ MD (21)

where WJ kp is defined as:

WJ [3WJk /A ]SOJ (Z-u,...,2N+3; k,p-1,2,3) (22)
kpZ kq 2 qp

Using Equation (11), WJkpZ may be written in the form:

WJkpZ , -e kqs'js SOJqp (23)

The acceleration a. of G. in R may be obtained by differentiating

Equation (19), leading to:

(V + Zkz)nk (24)

*1 jZkZZo

where by Equations (20) and (21), the non-zero VjZk are given by:

j-1 M

V~ m Ij kp Z r r+Z li.~p ; (25)

where by Equation (23) WJkp Z is:

WJkpZ -ekqs ( jzsSOqp ,+ ZsSOJqp) (26)

Therefore, the kinematical description of the system is defined by

Equations (11), (16), (19), and (24), and specifically by the four block

12.



matrices k J V1.k, and V1 zk" From Equations (15), (17), (21),

and (25), it is seen that each of these matrices may be computed by

vector and matrix mulciplicacions which are easily developed into

computer algorithms. These matrices play a central role in the develop-

ment of the equations of motion of the model.

Equations of Motion

Consider again the cable model of Figure 1. Let the externally

applied force system on each link L, be replaced by an equivalent force

system consisting of a single force F1 , passing through G. together with3

a couple with torque M. Then Lagrange's form of d'Alembert's principle

states that the governing dynamical equations of motion for the chain

system are:

F 1 + F- 0 (Z-,...,2N+3) (27)

F are called "generalized active forces" and they are given by:
Z

F V F + j M (28)
2. JZk jk + jik jk

where there is a sum from i to N on j and from I to 3 on k, and where

and M are the a components of F and M.. are calledk and.M.4 .c -ok -a

generalized inertia forces" and they are given by:

F* V F* + J*M*. (29)
Zi jZk 'k >&( zI



-WH I

where the indices follow the same rules as in Equation (28) and where

Fk ad * are the nok components of the inertia forces F*! and inertia

torques Mi given by the expressions [61:-J

-m a (no sum) (30)

and

. - W x ( •j (no sum) (31)

where m. is the mass of L. and I. is the inertia dyadic of L relative

to G. (j-l,...,N).

By substitutint Equations (16) and (24) into Equations (30) and

(31) and ultimately into Equation (27), the equations of motion may be

written in the form:

a ZPXp f z (Z I,...,2N+3) (32)

where there is a sum from 1 to 2N+3 on p and where a and f are

given by:

a~ nV V -.- I .V (33)

a 'jpk j Zk Ijkn'jpn"j ,k

and

13



f -(F I+ M V V XC +- 1
9. jZk jqk'q lknjZn jqk q

+a kjqn Ajsr Zkjmr q s (34)

where there is a sum from I to N on J, q, and s and a sum from 1 to

3 on the other repeated indices.

Equations (32) form a set of 2N+3 simultaneous ordinary, nonlinear

differential equations determining the 2N+3 generalized coordinates XZ

of the cable system. Since the coefficients aZp and f,, of these

equations are algebraic functions of the physical parameters, and the

four arrays V Jk' Zk' -JZk' and wJgk' the equations may be generated

on a computer. Furthermore, once they are developed, they may also be

solved numerically by a computer by using a standard numerical integra-

tion routine.

Computer Code

Numerical algorithms to evaluate the above parameters and expressions

have been developed and compiled into a user-oriented computer code. As

input, the code requires: the number of links; the masses; the centroidal

principal inertia matrices; the mass center positions; the connection (or

reference) point positions; the motion profile for those links : i:h

specified motion; the applied forces and moments: and the initial

configuration.

The output of the code includes: the values of all variables and

their first derivatives; the mass center positions, velocities, and

accelerations; and the connection point positions, velocities, and

accelerations.



LAGR.ANGE MLLTI-LINK ?ENDULUM MCEL

To obtain an analytical verification of the governing equations (32),

consider the two-dimensional oscillations of a multllnk hanging pendulum

with a concentrated end mass as shown in Figure 3. This system has N

degrees of freedom which may be described by the angles i.. as

shown in Figure 3. The equations of motion of this relatively simple

system can be obtained through Equations (32) or independently by using

Lagrange's equations.

If each link has the same mass m and length Z the kinetic energy

K of the system may be expressed as:

2 V2 ' " 2K - (m/2)CV + v (ZI12)(? + v +
K I Go G N

+ 12)] + (M/2)V2 (35)

where the C (i a 1,..,N are the mass centers of the links, Q is

the end p.,jint with mass M. The velocity of a typical mass center G.

may be expressed as:

where the n. Ni .... ,N) a-e uni7 vectors normai to :he i4nks as snown

in Figure 3. 3v substinurLng expressions of :he for o Equation 3o

3
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Figure 3. Two-Dimensional multli- ,edlr oe
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into Equation (35) and by carrying out the scalar products, the kinetic

energy may be written in the form:

N N
K M (M 2'2)1 ". ij (37)

ilj-l i]

where the m j are given by the expressions:

mi. (1/2) [I + Z(N-k) + 2(M/m)]cos(i. - 3.) (38)

if i#j and k is the larger of i and j

and

mij - ((N - i) + (1/3) + (M/m) I if i-j (39)

Lagrange's equations then lead to governing equations of motion of the

form (6]:

d(K/Ii )dt - 3K/36 = (i - 1,... ,N) (40)

where F is the generalized active force associated with i The only

forces making a non-zero contributin to F, are the weight forces.
i

ience, F., may be written as:
"i

N

Z ()V / ; • (-mgk) 4- (-V • (-Mgk)
i j . *1i J- -o

where k is the vertical unit vector as shown in Figuire 3. and g is :,he

;ravitational constant.



By substituting Equation (37) and (41) into Equations (40), and

by carrying out the indicated operations, the equations of motion take

the form:

N .
(M 9 + p ij 2+ (g/Z)k ij - 0 i - ,... ,N (42)

J-1

where the mij are given in Equations (38) and (39) and where pij and

kij are given by the expressions:

pij - (1/2)[1 + 2(N-kj + 2(M/m)]sin( i - 9 ) (43)

if i # j and k is the larger of i and j

and

piJ 0 if i - j (44)

and

kij - 0 if i j (5)

and, finally

k N -1 (M - sin i

i,.- (:/2) .. (M./rn)]i- (46)

2. _____



MODEL VALIDATION AND COMPARISON

It is relatively easy to show - particularly if the number of links

is small - that the equations of motion given by Equations (32) and

(42) are the same. (This, of course, requires the conversion of the

relative orientation angles used in Equations (32) to absolute angles as

shown in Figure 3.) Hence, when Equations (32) and (A2) were independently

integrated for a number of cases as described below the results were

identical.

The Hanging Chain

The small oscillations and natural frequencies of a hanging cable or

chain have been examined and studied by several writers, including

Salvadori and Schwartz [13] and Woodward [14]. These investigations

involve the solution of the governing partial differential equation

modelling the continuum of the hanging cable.

For an initially straight cable inclined at an angle 0 with the

vertical, and released from rest, the horizontal displacement v may be

expressed approximatel7 as [131:

y y(x,t) e 8 0L[0.139J0 (2.40Vx/L)cos 1.20vg/L

- 0.0173 J 0 (5.32'./L)cos 2.76Vg/-L t

+ O.00568J0 (3.63v'x/L)cos 4.33vg/L t]

19



where x is the vertical coordinate along the cable, t is the time, L

is the total cable length, and J0 is the Bessel function of order zero.

For a 15 ft. cable or chain modelled by 13, 1 ft. links, Equation

(32) was integrated for various 6 and the results were compared with

those produced by Equation (47). The comparisons of the predicted

shapes as the chain passes the vertical are shown in Figures 4a. and 4b.

Natural Frequencies

For small oscillations, Woodward [141 has solved the governing

partial differential equation of a hanging cable with a concentrated

end mass. He has calculated and tabulated the natural frequencies for

various end-mass to cable-mass ratios. By linearizing Equation (42),

the analogous finite segment eigenvalue problem can be solved and the

results compared with those of Woodward [14]. Table I. shows a

comparison of results for the lowest frequency for chains of 5, 10, and

100 links respectively. Table II. shows the same comparison for the

second lowest frequency. Finally, to show the convergence of the finite

segment model, Table III. presents a comparison for the fifth frequency

for chains of 5, 10, 20, 50, and 100 links. (The numbers listed in

these tables are 2wyL/g where - is the natural frequencv.)

20



I. A Coe-.pAcLson ,he inicz- eg-ienc '.!odei .nd a C.nnc-a u,

Model for the owest carural Fra.uen -or a ;ang,,- Cable.

N'Iuber of Links Continuum

I{Resul.ts l11

5 10 100, _ _ __ _ _ __ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.00 2 . 077 I 2.405 2. 05 i 2.405

0.1. 2.117 2.315 2.315 2.315

0.2 2.261I 2.260 2.260 2.260

0.5 2.174 2.173 2.173 2.173

1.0 2.113 ?.113 2.113 2.113

2.01 2.067 2.067 j 2.067 2.067

3 3.0 2.030 2.03n 2.030 I 2.030
.- 7_ , L t__ _ _ ._ _ _ _

O.n 2.016 2.016 2.016 2.n!6

20.0 2.008 2.008 , o.008 2.011

50.0 2.003. 1 2.003 2.00 2.001

Natural Frequency: 2-, L L,

21.



TABLE II. k Comparison of the Finite Segment Model and a Continuum
Model for the Second Lowest Natural Frequency for a Hanging
Cable.

N Number of Links Continuum

5 10 100 Results (14

0.0 5.714 5.574 5.521 5.520

0.1 5.788 5.672 5.632 5.632

0.2 6.067 5.963 5.929 5.928

0.5 6.972 6.873 6.840 6.840

8.308 8.200 8.164 8.163

2.0 10.485 10.354 10.311 10.311

5.0 15.247 15.060 14.997 14.998

10.0 20.892 20.637 20.564 20.553

20.0 29.059 28.706 28.614 28.588

150.0 45.478 44.937 44.673 44.739

Natural Frequency 2w L'Y

22



TABLE III. A Comparison of the Finite-Segment Model and a Continuum Model
for the Fifth Natural Frequency for a Hanging Cable.

N Number of Links Continuum

5 10 20 50 00 Results 1]

0. 262 16.965 15.584 15.065 14.968 14.931

0.1 24.392 19.192 18.028 17.686 17.636 17.619

0.2 26.089 21.267 20.119 19.786 19.738 19.722

0.5 30.719 26.223 24.931 24.564 24.512 24.493

i 1.0 37.291 32.567 31.014 30.578 30.515 30.493I 1 .1
.5 2.0 47.904 42.300 40.311 39.756 39.675 i 39.648

5.0 70.871 62.869I 59.928 59.112 58.996 58.951
10.0 97.861 11 2 . 28 2  82.820 81.679 81.546 81.466

120.0 1136.722 121.384 1115.709 1114.146 113.955 113.811
1I~A1

5 04.6 190.18 181.655 !179.264 1178.654 178.511

Natural Frequency 2j 5'/-5

213



Submerged Catenary Cable

An experimental verification of the finite segment model can be ob-

tained by comparison with data recorded at the U.S. Navy Civil Engineering

Laboratory at Port Hueneme, California. In these experiments a totally

submerged cable supported at one end, with a spherical body at the other

end was initially held in a catenary shape and then released from rest

[15,16]. The subsequent cable shape and motion were recorded. The

same experiment was simulated using the finite segment cable model and the

computer model SEADYN of Reference [15]. Table IV and Figure 5. show a

comparison of the experimental and computed results for the end-body displace-

ment. (In the analysis using Equations (32), the fluid forces were modelled

by using results of References [3] and [17].)

'9,
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TABLE IV. A Comparison of the Finite Segment Model, SEADYN [15,16]
and Experimental Results for the End Displacement of a
Submerged Cable.

Experimental SEADYN Finite-Segment
Time Results Results Model Results

(X,Y)(ft) (X,Y)(ft) (X,Y)(ft)

0.0 20.5, 1.25 20.5, 1.25 20.5, 1.25

2.0 1 20.3, 6.65 20.71, 8.86 20.52, 7.97

4.0 20.2, 15.65 21.01,16.81 21.11,15.34

6.0 20.2, 24.15 21.31,22.41 21.0, 22.21

8.0 20.5, 32.65 21.07,27.47 20.89,28.97

10.0 20.5, 40.55 20.77,32.29 20.84,35.78

12.0 20.5, 46.95 20.54,37.35 20.88,42.61

14.0 20.5, 51.15 20.24,42.11 21.0, 49.19

16.0 20.0, 52.85 20.24,46.81 21.05,53.25

18.0 19.5, 53.55 19.64,51.02 t 20.63,54.06

20.0 18.9, 53.95 19.17,53.07 I 19.89,54.49

NOTE: X is the Horizontal Coordinate of the Spherical
End-Body and Y is the Depth Coordinate.

25
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CONCLUSIONS AND APPLICATIONS

Figure 4a. shows excellent agreement between the finite segment

model and the linear continuum model for small initial displacement angle.

Indeed, the continuum model and the approximate solution of Equation (47)

cannot be considered valid for large displacements. Figures 4a. and 4b.

are thus in a sense a measure of the range of validity of the linear

continuum model. Also, note that for large 90 the finite segment model

shows the period to be larger than that predicted by the linear model.

This is consistent with nonlinear pendulum theory [181.

Tables I, II and III show the convergence of the finite-segment model

to the linear continuum model for small amplitude oscillations. For the

lowest frequency there is excellent agreement with only five links in the

finite segment model. Moreover, even for the fifth frequency there is

relatively good agreement with as few as ten links.

Finally, the comparison of the finite-segment model results with

experimental results also shows good agreement. This comparison validates

not only the finite-segment model, but also the modelling of the fluid

forces as recorded in References f3] and r171.

These results all suggest that the finite-segment cable model can

provide a very effective and efficient model of the nonlinear dynamic

behavior of long heavy cables. Indeed the most appropriate applications

are likely to be with long submerged :owing cables, mooring cables, and

hoisting cables.
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